BLDC propeller Thrust

INTRODUCTION

The previous model used for the EE471 design project had some issues. The actuators
(spinning propellors) were modeled basically as a 1st order lowpass filter for no good
reason (intuition does not count as a good reason), and they were not even considered
as part of the plant. So the time has come to derive a model based on actual physical
principles. This model will include the following significant assumptions:

1.

The BLDC can be modeled as a normal 2nd order DC motor. This is acceptable
because the only difference between the two types is the method of commutation.

. Air resistance experienced by the spinning prop is proportional to the speed squared.

This is implying that the most significant component of air resistance is turbulent
drag, given by: Fp= ;—pv2 Cp A. We can simplify this by collecting all the constants

like so: Fp=dv2

. Model thrust as proportional to the square of the rotational rate. There is a well known

propellor thrust equation given by: T = C; pn? D* (Ibf)

. The aerodynamic thrust responds instantaneously to rotor speed, meaning that the

above equation has no frequency dependance. | do not know if this is true, and |
suspect it is not, so the prevailing assumption is that the working fluid responds
many times faster to changes in rotor speed, than does the rotor speed to changes
in input voltage (or duty cycle). | would like to check up on this at a later date.

| would also like to standardize some symbols:

Those applied to motors:

Kv
K
o)
fi

J

o 0

Vi

--> BLDC motor constant (rpm/V)

--> S| motor constnat (V/[rad/s])

--> Angular Position of the ith Rotor (rad)

--> Current through the ith Armature (A)

--> Moment of Inertia of combined Rotor and Propeller (kg-m2)
--> Motor Coil Resistance (Q)

--> Motor Coil Inductance (H)

-->Turbulent Drag Coefficient (N/[rad/s]?)

--> Effective Voltage applied to ith Motor -- Vsyppiy'D -- (V)

PW; --> Pulse Width Input to Ith Motor (us)

Printed by Wolfram Mathematica Student Edition

2 | ThrustBETTER.nb

n; --> Rotational Rate in rps of ith Rotor (rps)
npm, --> Rotational Rate in rpm of ith Rotor (rpm)

Those Related to Propellers and Aerodynamics:

TNi -->Thrust of ith Actuator (N)

Ct -->Thrust Coefficient (Calculated) (unitless)
D --> Propeller Diameter (feet)

Jo} --> Air density (slugs/ft"3)

Anv --> Combined Thrust Constant (N/[rad/s]?)

Those Related to the Plant

e --> Angle of Pendulum Relative to vertical (rad)
Brange --> Maximum Measureable Angle (rad)

Viange --> Measurement Voltage range (V)

Veenter -—> Voltage presented when 6 = 0 (rad)

Ic --> Moment of Inertia about pendulum’s pivot point (kg-m?)
m --> Mass of pendulum (kg)

Rp --> Length of Pendulum (m)

re --> Distance from pivot to center of mass (m)

g --> gravitational constant (m/s?)

a --> Coefficent of angular dependence in acceleration equation (1 /32)
b --> Velocity Dependent Friction Coeficient (N/[m/s])

B --> Input gain (1/kg-m)

1% --> Measurement Gain (V/rad)

uj --> Control input (N)

Getting to It

Emax BLDC motor specs

Specified motor constant
Kv = 2300;

Specified parameters at 12V input with 5X3 (Dlameter X Pitch) plastic prop:
Shown: speed (rpm), thrust (grams), current (amps)

nl2 = 20100;

Printed by Wolfram Mathematica Student Edition

ThrustBETTER.nb | 3

T12g = 310;

I12 = 7.5;

Standardization of units

Motor constant in standard units (Vs/rad)

K = N[60/2/Pi /Rv]

0.00415187

Force conversion factors: grams to newtons (g2N), pounds force to newtons (Ibf2N)
g2N = .0098;

1bf2N = 4.448;

DC motor with propellor (steady state)

. C_l_) Armature [(
= ctreuit

The differential equations which descirbe this dynamical DC motor model are as follows:
Note that I'm calling the angle 6 ¢, since | want to use 6 for the plant.

Kir=J i+ d ¢/
Vi=Rij +L 3+ K

In steady state (no change of speed) motor torque is equal to the torque due to friction.
Also, the voltage across the Inductor is nothing, because the current doesn’t change:

Kij=d @,
Vi=Rij+ K ¢,
Pi=2 TMips

Nrps = Nrpm [60

According to the EMAX 2204 datasheet, the angular speed (in rad/s) with prop load at

Printed by Wolfram Mathematica Student Edition

4 | ThrustBETTER.nb

12V input (2000us pulse width).
wl2 = N[2 % Pi*nl12 /60]
2104.87

Solving for the Resistance

R= (12-Kxwl2) /112

0.434783

Since we already said that thrust is proportional to the square of the rotational rate,
we desire to obtain an expression for the speed squared as a function of applied

voltage:
d ;2
li= ¥ o
ji = (Vi=K ¢)
;=
R

Only the positive solution makes sense, so we only take that one. After some simplification,
the expression for the speed squared is obtained:

2_ K\ _ _K 4dR s/ _
¢ 'de' 2d2R2['\'1+ K Vi 1]

The squre of the rotational rate in rps is obtained by dividing the whole thing by 4 r°.

2__K '._K“/ 4dR /s _
n; _4n2dR.v' 2dR| 1+ K3 Vi 1]]

Lets review this formula: So far, we know the following: K was given, R was calcuated, and n is
known for V; =12 V. The only thing left to calculate is d. This can be done by comparing with
data. | did it by guessing and checking -- evaluating the above equation at the operating
condition spec’d in the spec sheet:

d=6.89X10"° (N/[m/s]?)

n? = 3.517X104[V,-—11.9672[—\/1 +0.1671 V, -1]]

Obtaining the thrust funciton is just a matter of multiplying the speed squared by some constant.

Printed by Wolfram Mathematica Student Edition

ThrustBETTER.nb | 5

Linearized expression for speed squared

The function we got is nonlinear. It will become convenient to make n? a linear function of voltage.
Let us linearize about the half throttle point: V;/=6V. Since only the speed term in one equation is
nonlinear, only that term in the eqs of motion will be modified.

The first order Taylor series expansion is like this:
f(x) = f(a) + (df/dx) | x=a(x-a)

n? (6) = 3.6276 X 10* (rps?)

onj? K K2 [1 4dR 4dR -1/2 K 4dR -1/2
= arl! ~ 24rs e 1+ 58V)| = [-1+ 5E W)

2
";”—V (6) = 1.0318 X 10* (rps?/ V)

SO...

n? (V) = 3.6276 X10* + 1.0318 X 10* (V; - 6)

5 nA(V) = 1.0318 X10* (V) - 2.5633 X 10*

Linearized Thrust Function

Thrust can be calculated using the following formula:
Ti=C¢X pXn/? X D*

T; = Thrust in Ibf

C; = Thrust Coefficient

p = air density in slugs /ft>
n;j = revolution rate in rps
D = diameter in feet

Since we have data for top speed, we can solve for the thrust coefficient to get thrust
as a function of speed.

po =0.002378;

nl2s = n12 /60;

Df = 5/12;

The thrust specified in the emax datasheet can be converted to Ibf:

T121bf = T12g* g2N /1bf2N
0.683004

Printed by Wolfram Mathematica Student Edition

6 | ThrustBETTER.nb

Knowing the rotational rate and the thrust at a known operating point (12V input) allows us
to calculate the thrust coefficient:

Ct = T121bf /po /n12s*2 /Df*4
0.0849115

This is a reasonable value for the thrust coefficient, so we can move on, and rewrite the
thrust function as:

Tni = Ay nf?
where Ay = C; X p X D* X4.448 = 2.707 X 105

The factor of 4.448 constitutes the conversion from pounds of force to Newtons.

The complete linearized thrust function is obtained by substituting the linearized expression
for n? into the above:

Tni=2.707 X 107°[1.0318 X 10* (V) - 2.5633 X 10%]
= Tni =0.2793 (V) -0.6939

Notice that this gives a negative result for voltages below 2.48V, and that does not make sense.
So if we agree on this as the model to be used, let us agree to not apply an input that corresponds
to anything below 2.48V. Before we decide if this is good enough, let’s try to get everything on a
plot so we can look at it.

Mapping Pulse Width to Effective Voltage

Generally, ESCs designed for RC hobby applications take a pulse width ranging from 1ms to 2ms.
A 1ms pulse should correspond to a low throttle control signal, and a 2ms pulse should
correspond to a full throttle control signal. For the electric motor, it would make sense if 1ms
corresponds to 0V, and 2ms corresponds to 12V, but really, there is no reason to believe that
the person who programmed the ESC didn’t just apply some arbitrary monotonic function
mapping the input pulse width to the effective output voltage (or duty cycle), and in fact,
these things have several operating modes, programmable through the throttle. With that in mind,
lets assume that alow throttle signal will be near 1ms, and a full throttle signal will be near 2ms. By
adjusting the mapping of min and max pulse width signals to min and max effective voltages, wilst
not straying too far from the baselines, we can get our nonlinear thrust function to match the data
very closely.

The plot below was generated with the following postulated operating parameters:

Printed by Wolfram Mathematica Student Edition

ThrustBETTER.nb | 7

PWpin =1100 us
PWax = 1800 us

VR=12V
PWinput=PWmin
Vet = 50— X V)
eff PWmax—=PWmin R

Note: the above mapping is the only truly dippy mathematical thing going on here. The results below
make it easy to defend.

Fan Thrust as a Function of Input Pulse Width

2|5 T T
Data
Detailed Fit
5 m— | inear Approximation
— 1 .5 B
Z,
®
b= ;
&
= 1 b
051
D 1 1 1 1 1 1 1 1

1200 1250 1300 1350 4400 1450 1500 1550 1800 1650
Pulse Width (1 s)

This looks pretty good! We can adjust the offset if we want to minimize error, but we might as
well just leave it and see how it works. The next thing is to make a linearized dynamical model
and see if its steady state response matches this.

DC motor with propeller (dynamical model)

As stated before, the differential equations describing the electric motor with the propoellor are:
Kii=Jg;+d ¢
Vi=Rij +L S+ k¢

The nonlinear state space equations for states i and 6 can be written as:

Printed by Wolfram Mathematica Student Edition

8 | ThrustBETTER.nb

¢,= 1[Kii - d ¢/]

% - HVi-Ri- k)]

That first equation is nonlinear, so we can linearize it about the same rotational speed as we did
earlier... so let’s find out what the rotational speed is when the effective input voltage is 6V.
Above, we showed that:

ni (6) = 3.6276 X 10* (rps)?

so ni(6) = 190.46 rps

- ¢(6)=271n(6) =1.1967 X 103 (rad/s)

20, (6) = —2J—d #,(6) = - 479l _ _ 16491 X107

a9; J - J

Notice that this is the only term that needs to be linearized. We can now make a linear SS model.

Linearized State Space Representation of the Motor and Prop

The state space model looks like this: Note that the Vbias input is required for matching of the
linearization about a 6V input. Also | got rid of subscripts for now.

: . _2d . K
(4)(2) 2 s |e(2)
L

L L

¢ =y=(2¢(6) o)(Z)

The output equation comes from the first equation of motion -- it was solved for 92, and the
linearized expression for 6 was substituted in like so:

¢ =YKki- 5 (Kki-2d")|]= J[Ki - Ki+2d3(6) $]=2 $(6) 6

Converting this output to thrust is just a matter of multiplying the C matrix by some constants.
A signal flow graph for the motor/prop combo with thrust as an ouptut is shown below.

Printed by Wolfram Mathematica Student Edition

ThrustBETTER.nb | 9

—2¢(6) - d/J

b(6) - An/An%>— - Y (s) — Thrust

So, K'is known, R was calculated, d was calculated, n(6) is known... but J and L are unmeasured.
These parameters determine the speed of the system. | tried to figure them out by looking at
pictures of the motor and propellor, and finding out how much they weigh, and guessing things.

Am = {{—2*d*d)5/J, Km/J}, {-Km /L, —Ra/L}}

24, Km
J J
_Km_Ra

L L

Bm = {{0, 0}, {1/1, -1/1}}
)

Cm = {{2%¢s, 0}}

E]

(246 0)
Dm = {{0}}
(0)

Thrust/Voltage Transfer Function

It will be convenient to have a transfer function for this motor for analysis of its response. Let’s

Printed by Wolfram Mathematica Student Edition

10 | ThrustBETTER.nb

derive one from the state space model.
& = IdentityMatrix[2] * s - Am

2d g Km
s+ = >
Km

Ra
3 7 + s

TF = Simplify[Cm.Inverse[&] .Bm]

(2Km éﬁ 2Km én)
Km?+J s (Ra+L 5)+2 d (Ra+L s) g Km?+J s (Ra+L 5)+2 d (Ra+L 5) g

Dcoeff = CoefficientList[Denominator[TF[[1l, 1]]], s]

{2dRags+Km?, 2d L ¢s +J Ra, J L}

-2
So now that we have two transfer functions for & we can easily obtain a transfer function for

V(s)
%@- by multiplying by a factor of 4—}\;“[3. Ignoring that second TF for now (the one for input bias)...

2K6(6) Av_
Thrust(s) _ JL 47':2

V(s) 2, JR+dLB(6) 2dRO(6)+K?
St T s+ m

Withe the calculated and approximated values for the specific parameters, this gives:

1346

Thrust(s) = —————
s2+111.1 s +4819

V(s)

One important thing to remember is that our linearized steady state model required a voltage
offset of negative 2.48V (due to the modificaiton of mapping PWM signal to effective voltage). This
is the input into the 2nd TF. When all is said and done, the results are thoroughly satisfying. Note
that the data cursor in both figures shows highlights the steady state value of thrust due to an
effective input of 6V, which happens to correspond to a pulse width of 1450us according to the
mapping used.

Printed by Wolfram Mathematica Student Edition

Thrust (N)

25

s
(i)

Foes. 3

0.6

Fan Thrust as a Function of Input Pulse Width

ThrustBETTER.nb | 11

<

== = Steady State Velue from Linearized Dynamical Model

Data
Detaled Steady Stste Fit
Linzarized Steady State Fit

X 1450
¥: 0.082

1200

1250 1300 1350 1400

14500 1500

Pulse Width (u s)

Printed by Wolfram Mathematica Student Edition

15580

1600

1650

12 | ThrustBETTER.nb

Step Response of T(s) = Thrust(s)/Voltage(s)

1.2

il
T
]

X 01372
Y. 0.982

=

co
T
|

Thrust in Mewtans in response to 6Y input
O O o
Pa e o]

=
1

0 0.02 004 006 008 0.1 0.12 014 0.16
Rime(seconds)

Another important thing to remember is that | totally guessed the coil inductance and the moment
of inertia of the rotor/prop. Well, not totally guessed: | judged the size, core material and number
of turns based on pictures of the motor, and | assumed that the rotor weighted 10 grams and that
its moment of inertia can be approximated by a ring of mass at a distance around where the
magnets are. Measuring these things could help.

Also, | have no idea if the ESC has some kind of servomechanism to control the speed. All this
assumes it does not.

Complete Open Loop State Space Model: Plant +

Actuators:

We can take a look at the whole system, actuators and all on a signal flow graph like this:

Printed by Wolfram Mathematica Student Edition

ThrustBETTER.nb | 13

—26(6) - d/J

26(6) - An /47O~

Zy U (s)
K/J
—-K/L
Voras O=—1/ L1
Vi(s)O—1/1—P»
2y
_R/
-me.?o__le
Vi(s)O—1/L

This picture is kind of rough, so we can do some variable changes, and simplify some connections to

arrive at this:

Printed by Wolfram Mathematica Student Edition

14 | ThrustBETTER.nb

Vccntcr O_']-

1 .j)—zu y Y(s) >V
p.

| also added another input Vienter, Which is 2.5V with our current setup.

The states are as follows:

Xi1= 6p
X2=ép
X3 = ¢,
Xa =iy
Xs= ¢,
Xe = iia

The Inputs are:

Ui=v;
U=V,

Us = Veenter
Us = Vbias

Printed by Wolfram Mathematica Student Edition

ThrustBETTER.nb | 15

The variable simplifiactions are thus:

H=1/L

K =2 ¢(6) BAy [4
my=2¢(6)d/J
mqa= K/J

myq = K/L

myo = R/L
a=rcmg[[mrc? +ic]
¥ = Vrange [2 Brange

p = air friction coeff

The second one is “Kappa”, but it looks like “K” in this font... :(

We can make a new State Space model for the complete open loop system directly from the
SFG:

X1 =X,
Xo=aXi-pXo+KX3-KXs
X3=-my1 X3+ M2 X,

X4 =M1 X3 = Maz X4 = H Viyjas + H V4
X5 =-my1 X5 + M2 Xe

X6 = —Mp1 X5 — My Xg — H Viias + H V2

Y =y X1+ Veenter
(X,)
. 0o 1 0 0 0 0 X 0 00 O
X2 la-p K 0 -K 0 ||X| |0 00 o [/u
).(3 _ 0 0 -myy mq 0 0 X3 + 0 00 O U,
X, 10 0 -my —-my, 0 0 Xy H 0 0 -H||U;
X 0 0 0 0 -myy My Xs 0 00 O U,
0 00 O 0 -my -myu/\Xs) \0 HO -H
\ X6 /
Xi
X, U,
—_ X3 U2
Y=(y 000 0 0) X, +(0010) Us
Xs U,

Xe

Printed by Wolfram Mathematica Student Edition

16 | ThrustBETTER.nb

MATHEMATICA STUFF

Aol = {{OI 1! 0/ ol OI O}I {ar -p, K, 0! -K, O}, {OI 0/ -mi1, mi2, 0/ 0}!
{01 0/ —-m21, —-m22, 0/ 0}/ {01 0/ 0/ 0/ -mi1, m12}l {01 0/ OI 0! -m21, _m22}}

0 1 0 0 0 0
a -p K 0 -K 0
0 0 —-mn mn 0 0
0 0 -—-my -mxn 0 0
0 0 0 0 -myp mp
0 0 0 0 —mo1 —m2)

Bol = {{OI 0! 0/ 0}! {OI 0! 0/ 0}! {OI 0! 0/ 0}! {HI 0! 0/ _H}l {Or 0! ol O}I {Or HI ol _H}}

000 O
000 O
000 O
H 00 -H
000 O
0 HO0O -H

Col={{y,0,0,0,0,0}}
(y 00000)

Dol = {{0, 0, 1, 0}}
(0001 0)

olssm = StateSpaceModel[{Ao0l, Bol, Col, Dol}]
0 1 0 0 0 0 000 0\s

a —p K 0 -K 0 0 00 O
0 0 —-mn mn 0 0 0 00 O
0 0 -—-my —-mxn 0 0 H 0 0 -H
0 0 0 0 -myp mpp |0 0 0 O
0 0 0 0 -my1 —-mpn |0 H 0 -H
vy 0 0 0 0 0 001 0

MatrixRank[ControllabilityMatrix[olssm]]

6

MatrixRank [ObservabilityMatrix[olssm]]

4

Oh no! The observability matrix is not of full rank! We have to find out which modes are unobservable.
Might as well take a look at the transfer functions:

Printed by Wolfram Mathematica Student Edition

ThrustBETTER.nb | 17

%ol = s » IdentityMatrix[6] - Aol

s -1 0 0 0 0
- s+p -K 0 K 0
0 0 S+ mp —mi2 0 0
0 0 ma1 S+ mp 0 0
0 0 0 0 S+ mi —mi2
0 0 0 0 my1 S+ m

TFol = Col.Inverse[&ol].Bol;

Roots [Denominator[TFol] [[1, 1]] == 0, s]

1
— _ _ _ 2 -2 2 -4
§= 5 mip — ma2 mr| mpy my| + mz; mi2 ma1

1
= —|-my —mp - m} -2 3 —4
N E mi1 — mp2 mi mp my1 + m3;y mi2 myi

_1 _ _ 2) 2 —4
§= E mip —mp2 + \ myg mpy mj1 +my; miz2 ma

1 1 1
s = 5(—m11—m22+\/m%1—2m22m11+m%2—4m12m21 J\/SZ E(—\/4a+p2 —p)\/s: 5(\/4(X+p2 —p)

Looks like we only have one RHP pole... just like the original system. What is interesting to
me is that the observability matrix becomes full rank when the motors have different parameters.
This bugs me. | don’t know what to do about this for sure, but it seems odd to me...

UPDATE! Measure the Current, or Motor Speed!

| also noticed that when you try to make an LQR controller with the model we made, it wants to apply
feedback to the inputs Vienter and Vpias. | think | should just get rid of these, and just remember their
meanings via software.

Bol = {{0, 0}, {0, O}, {0, O}, {H, O}, {0, O}, {O, H}}
0

T ooocoo

0
0
H
0
0

Col = {{¥, 0, 0,0, 0,0}, {0,0,0,1,0,0}}
(700000)
000100

Dol = {{0, 0}, {0, 0}}

(0)

Printed by Wolfram Mathematica Student Edition

18 | ThrustBETTER.nb

olssm = StateSpaceModel[{Ao0l, Bol, Col, Dol}]

(=}

oR|looc o oR

1 0 0
-p K 0

0 -mpn mp

0 -my —-mxp

0 0 0

0 0 0

0 0 0

0 0 1

0
-K
0
0
—mji
—mai
0
0

0
0
0
0
mi2
—m2)
0
1

0

0
0
H
0
0
0
0

S

ocolMoococoo

MatrixRank [ObservabilityMatrix[olssm]]

6

Hurray! this is a great thing. We can measure the current through just one motor, and get a fully
observable system. What if our measurement is the sum of currents through both motors?

Col = {{¥, 0,0,0,0,0}, {0,0,0,1,0,1}}

(700000)
000101

olssm = StateSpaceModel[{Ao0l, Bol, Col, Dol}]

0

oR|looc o oR

1 0 0
-p K 0

0 -mn mn

0 -my -mxn

0 0 0

0 0 0

0 0 0

0 0 1

0
-K
0
0
—mji
—ma]
0
0

0
0
0
0
mi2
—m2)
0
1

0

0
0
H
0
0
0
0

S

ooMoococoo

MatrixRank [ObservabilityMatrix[olssm]]

6

Haha! what a gift! This is really easy to do with the setup we made. All we need is something like
an INA169, and a tenth ohm power resistor. | think we decided to limit the current drawn by each
motor to around 3A, so this will work good.

But, now that we have the combined current measurement, we need an observer for both -- and
all the other states if we want our control to be optimal. A good experiment could be to see how
little of feedback we need. Simple PD worked with the old model, so it will probably work here. |
would like to see if having more feedback about the motor speed and current will make it behave
differently. | hope it would, because | spent alot of time in this...

Printed by Wolfram Mathematica Student Edition

