
BLDC propeller Thrust
INTRODUCTION

The previous model used for the EE471 design project had some issues. The actuators
(spinning propellors) were modeled basically as a 1st order lowpass filter for no good
reason (intuition does not count as a good reason), and they were not even considered
as part of the plant. So the time has come to derive a model based on actual physical
principles. This model will include the following significant assumptions:
1. The BLDC can be modeled as a normal 2nd order DC motor. This is acceptable

because the only difference between the two types is the method of commutation.
2. Air resistance experienced by the spinning prop is proportional to the speed squared.

This is implying that the most significant component of air resistance is turbulent
drag, given by: FD = 1

2 ρν2 CD A. We can simplify this by collecting all the constants
like so: FD = dν2

3. Model thrust as proportional to the square of the rotational rate. There is a well known
propellor thrust equation given by: T = Ct ρn2 D4 (lbf)

4. The aerodynamic thrust responds instantaneously to rotor speed, meaning that the
above equation has no frequency dependance. I do not know if this is true, and I
suspect it is not, so the prevailing assumption is that the working fluid responds
many times faster to changes in rotor speed, than does the rotor speed to changes
in input voltage (or duty cycle). I would like to check up on this at a later date.

I would also like to standardize some symbols:

Those applied to motors:

Kv --> BLDC motor constant (rpm/V)
K --> SI motor constnat (V/[rad/s])
ϕi --> Angular Position of the ith Rotor (rad)
ii --> Current through the ith Armature (A)
J --> Moment of Inertia of combined Rotor and Propeller kg ·m2
R --> Motor Coil Resistance (Ω)
L --> Motor Coil Inductance (H)
d -->Turbulent Drag Coefficient N[rad /s]2
Vi --> Effective Voltage applied to ith Motor -- Vsupply·D -- (V)
PWi --> Pulse Width Input to Ith Motor (μs)

Printed by Wolfram Mathematica Student Edition

i μ
ni --> Rotational Rate in rps of ith Rotor (rps)
nrpmi --> Rotational Rate in rpm of ith Rotor (rpm)

Those Related to Propellers and Aerodynamics:

TNi -->Thrust of ith Actuator (N)
Ct -->Thrust Coefficient (Calculated) (unitless)
D --> Propeller Diameter (feet)
ρ --> Air density (slugs/ft^3)
λN --> Combined Thrust Constant N[rad /s]2

Those Related to the Plant

θ --> Angle of Pendulum Relative to vertical (rad)
θrange --> Maximum Measureable Angle (rad)
Vrange --> Measurement Voltage range (V)
Vcenter --> Voltage presented when θ = 0 (rad)
IC --> Moment of Inertia about pendulum’s pivot point kg ·m2
m --> Mass of pendulum (kg)
RP --> Length of Pendulum (m)
rC --> Distance from pivot to center of mass (m)
g --> gravitational constant ms2
α --> Coefficent of angular dependence in acceleration equation 1s2 
b --> Velocity Dependent Friction Coeficient (N/[m/s])
β --> Input gain (1/kg·m)
γ --> Measurement Gain (V/rad)
ui --> Control input (N)

Getting to It
Emax BLDC motor specs

Specified motor constant
Kv = 2300;
Specified parameters at 12V input with 5X3 (DIameter X Pitch) plastic prop:
Shown: speed (rpm), thrust (grams), current (amps)
n12 = 20 100;

2 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

T12g = 310;
I12 = 7.5;

Standardization of units
Motor constant in standard units (Vs/rad)
K = N60  2  Pi  Kv
0.00415187
Force conversion factors: grams to newtons (g2N), pounds force to newtons (lbf2N)
g2N = .0098;
lbf2N = 4.448;

DC motor with propellor (steady state)

;

The differential equations which descirbe this dynamical DC motor model are as follows:
Note that I’m calling the angle θ ϕ, since I want to use θ for the plant.
Kii = J ϕi

.. + d ϕi
 2

Vi = R ii + L dii
dt + K ϕ i

In steady state (no change of speed) motor torque is equal to the torque due to friction.
Also, the voltage across the Inductor is nothing, because the current doesn’t change:

Kii = dϕ i
2

Vi = Rii + K ϕ iϕi
 = 2πnrps

nrps = nrpm 60
According to the EMAX 2204 datasheet, the angular speed (in rad/s) with prop load at

μ

ThrustBETTER.nb 3

Printed by Wolfram Mathematica Student Edition

12V input (2000μs pulse width).
ω12 = N2 * Pi * n12  60
2104.87
Solving for the Resistance
R = 12 - K * ω12  I12
0.434783
Since we already said that thrust is proportional to the square of the rotational rate,
we desire to obtain an expression for the speed squared as a function of applied
voltage:

ii = d
K ϕi

 2

ii = Vi-K ϕi
 

Rd
K ϕ i

2 + K
R ϕi

 - Vi
R = 0

ϕi
 = K

2 d  -K
R ± K2

R2 + 4 d Vi
K R 

Only the positive solution makes sense, so we only take that one. After some simplification,
the expression for the speed squared is obtained:

ϕi
 2 = K

d R Vi - K4
2 d2 R2  1 + 4 d R

K3 Vi - 1

The squre of the rotational rate in rps is obtained by dividing the whole thing by 4 π2.

ni2 = K
4π2 d R Vi - K3

2 d R  1+ 4 d R
K3 Vi - 1

Lets review this formula: So far, we know the following: K was given, R was calcuated, and n is
known for Va = 12 V. The only thing left to calculate is d. This can be done by comparing with
data. I did it by guessing and checking -- evaluating the above equation at the operating
condition spec’d in the spec sheet:

d = 6.89 X 10-9 N  [m / s]2
ni2 = 3.517 X 104Vi - 11.9672 1 + 0.1671 Vi - 1
Obtaining the thrust funciton is just a matter of multiplying the speed squared by some constant.

4 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

Linearized expression for speed squared
The function we got is nonlinear. It will become convenient to make n2 a linear function of voltage.
Let us linearize about the half throttle point: Vi=6V. Since only the speed term in one equation is
nonlinear, only that term in the eqs of motion will be modified.

The first order Taylor series expansion is like this:
f(x) = f(a) + (df /dx) x=a(x-a)
ni2 (6) = 3.6276 X 104 rps2
∂ni2∂Vi = K

4π2 d R 1 - K3
2 d R  1

2
4 d R
K3 1 + 4 d R

K3 Vi-1/2 = K
4π2 d R 1 - 1 + 4 d R

K3 Vi-1/2
∂ni2∂Vi (6) = 1.0318 X 104 rps2 V
so...
ni2 (V) = 3.6276 X 104 + 1.0318 X 104 (Vi - 6)
∴ ni2(V) = 1.0318 X 104 (Vi) - 2.5633 X 104

Linearized Thrust Function
Thrust can be calculated using the following formula:
Ti = Ct X ρX ni2 X D4

Ti = Thrust in lbf
Ct = Thrust Coefficient
ρ = air density in slugs ft3
ni = revolution rate in rps
D = diameter in feet

Since we have data for top speed, we can solve for the thrust coefficient to get thrust
as a function of speed.
ρo = 0.002378;
n12s = n12  60;
Df = 5  12;
The thrust specified in the emax datasheet can be converted to lbf:
T12lbf = T12g * g2N  lbf2N
0.683004

ThrustBETTER.nb 5

Printed by Wolfram Mathematica Student Edition

Knowing the rotational rate and the thrust at a known operating point (12V input) allows us
to calculate the thrust coefficient:
Ct = T12lbf  ρo  n12s^2  Df^4
0.0849115
This is a reasonable value for the thrust coefficient, so we can move on, and rewrite the
thrust function as:

TNi = λN ni2
where λN = Ct X ρ X D4 X 4.448 = 2.707 X 10-5

The factor of 4.448 constitutes the conversion from pounds of force to Newtons.

The complete linearized thrust function is obtained by substituting the linearized expression
for n2 into the above:
TNi = 2.707 X 10-51.0318 X 104 (Vi) - 2.5633 X 104
∴ TNi = 0.2793 (Vi) -0.6939

Notice that this gives a negative result for voltages below 2.48V, and that does not make sense.
So if we agree on this as the model to be used, let us agree to not apply an input that corresponds
to anything below 2.48V. Before we decide if this is good enough, let’s try to get everything on a
plot so we can look at it.

Mapping Pulse Width to Effective Voltage
Generally, ESCs designed for RC hobby applications take a pulse width ranging from 1ms to 2ms.
A 1ms pulse should correspond to a low throttle control signal, and a 2ms pulse should
correspond to a full throttle control signal. For the electric motor, it would make sense if 1ms
corresponds to 0V, and 2ms corresponds to 12V, but really, there is no reason to believe that
the person who programmed the ESC didn’t just apply some arbitrary monotonic function
mapping the input pulse width to the effective output voltage (or duty cycle), and in fact,
these things have several operating modes, programmable through the throttle. With that in mind,
lets assume that alow throttle signal will be near 1ms, and a full throttle signal will be near 2ms. By
adjusting the mapping of min and max pulse width signals to min and max effective voltages, wilst
not straying too far from the baselines, we can get our nonlinear thrust function to match the data
very closely.

The plot below was generated with the following postulated operating parameters:
= μ

6 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

PWmin = 1100μs
PWmax = 1800μs
VR = 12 V
Veff = PWinput-PWmin

PWmax-PWmin X VR

Note: the above mapping is the only truly dippy mathematical thing going on here. The results below
make it easy to defend.

;

This looks pretty good! We can adjust the offset if we want to minimize error, but we might as
well just leave it and see how it works. The next thing is to make a linearized dynamical model
and see if its steady state response matches this.

DC motor with propeller (dynamical model)
As stated before, the differential equations describing the electric motor with the propoellor are:
K ii = Jϕ.. i + d ϕ i

2

Vi = R ii + L di
dt + kϕi


The nonlinear state space equations for states i and θ can be written as:
ϕ.. =  - ϕ 2 

ThrustBETTER.nb 7

Printed by Wolfram Mathematica Student Edition

θ
ϕ.. i = 1

J Kii - d ϕ i
2

dii
dt = 1

L Vi - Rii - k ϕi
 

That first equation is nonlinear, so we can linearize it about the same rotational speed as we did
earlier... so let’s find out what the rotational speed is when the effective input voltage is 6V.
Above, we showed that:

ni2 (6) = 3.6276 X 104 (rps)2
so ni(6) = 190.46 rps

∴ ϕ i(6) = 2 π n(6) = 1.1967 X 10^3 (rad /s)
∂ϕ.. i∂ϕ i

(6) = - 2 d
J ϕ i(6) = - 4π d ni(6)

J = - 1.6491 X 10-5
J

Notice that this is the only term that needs to be linearized. We can now make a linear SS model.

Linearized State Space Representation of the Motor and Prop
The state space model looks like this: Note that the Vbias input is required for matching of the
linearization about a 6V input. Also I got rid of subscripts for now.

ϕ..
i = z1


z2
 = - 2 d

J ϕ (6) K
J

-K
L -R

L

z1
z2

+ 0 0
1
L - 1

L
Va

Vbias

ϕ 2 = y =  2ϕ (6) 0  z1
z2

The output equation comes from the first equation of motion -- it was solved for θ2, and the
linearized expression for θ.. was substituted in like so:

ϕ 2 = 1
d K i - J 1

J K i - 2 d ϕ 2 = 1
d K i - K i + 2 d ϕ (6) ϕ  = 2ϕ (6) ϕ

Converting this output to thrust is just a matter of multiplying the C matrix by some constants.
A signal flow graph for the motor/prop combo with thrust as an ouptut is shown below.

8 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

;

So, K is known, R was calculated, d was calculated, n(6) is known... but J and L are unmeasured.
These parameters determine the speed of the system. I tried to figure them out by looking at
pictures of the motor and propellor, and finding out how much they weigh, and guessing things.
Am = -2 * d * ϕ6 / J, Km / J, {-Km / L, -Ra / L}
- 2 d ϕ 6

J
Km
J-Km

L -Ra
L

Bm = {0, 0}, 1  L, -1  L
0 0
1
L - 1

L

Cm = 2 * ϕ6, 0
 2 ϕ 6 0 
Dm = {{0}}
(0)

Thrust/Voltage Transfer Function
It will be convenient to have a transfer function for this motor for analysis of its response. Let’s

ThrustBETTER.nb 9

Printed by Wolfram Mathematica Student Edition

derive one from the state space model.
Φ = IdentityMatrix[2] * s - Am
s + 2 d ϕ 6

J -Km
J

Km
L

Ra
L + s

TF = Simplify[Cm.Inverse[Φ].Bm]
 2 Km ϕ 6
Km2+J s (Ra+L s)+2 d (Ra+L s) ϕ 6 - 2 Km ϕ 6

Km2+J s (Ra+L s)+2 d (Ra+L s) ϕ 6 
Dcoeff = CoefficientList[Denominator[TF[[1, 1]]], s]
2 d Ra ϕ 6 + Km2, 2 d L ϕ 6 + J Ra, J L
So now that we have two transfer functions for θ2(s)

V(s) , we can easily obtain a transfer function for
Thrust(s)

V(s) by multiplying by a factor of λN
4 π2 . Ignoring that second TF for now (the one for input bias)...

Thrust(s)
V(s) = 2 K θ 6

J L
λN

4 π2

s2+ J R + d L θ6
J L s + 2 d R θ6 + K2

J L

 Withe the calculated and approximated values for the specific parameters, this gives:

 Thrust(s) = 1346

s2+ 111.1 s + 4819 V(s)

 One important thing to remember is that our linearized steady state model required a voltage
 offset of negative 2.48V (due to the modificaiton of mapping PWM signal to effective voltage). This
 is the input into the 2nd TF. When all is said and done, the results are thoroughly satisfying. Note
 that the data cursor in both figures shows highlights the steady state value of thrust due to an
 effective input of 6V, which happens to correspond to a pulse width of 1450μs according to the
 mapping used.

10 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

;

ThrustBETTER.nb 11

Printed by Wolfram Mathematica Student Edition

;

Another important thing to remember is that I totally guessed the coil inductance and the moment
of inertia of the rotor/prop. Well, not totally guessed: I judged the size, core material and number
of turns based on pictures of the motor, and I assumed that the rotor weighted 10 grams and that
its moment of inertia can be approximated by a ring of mass at a distance around where the
magnets are. Measuring these things could help.

Also, I have no idea if the ESC has some kind of servomechanism to control the speed. All this
assumes it does not.

Complete Open Loop State Space Model: Plant +
Actuators:

We can take a look at the whole system, actuators and all on a signal flow graph like this:

12 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

This picture is kind of rough, so we can do some variable changes, and simplify some connections to
arrive at this:

ThrustBETTER.nb 13

Printed by Wolfram Mathematica Student Edition

I also added another input Vcenter, which is 2.5V with our current setup.

The states are as follows:
X1 = θp
X2 = θp
X3 = ϕ 1
X4 = i1
X5 = ϕ 2
X6 = i2

The Inputs are:
U1 = V1
U2 = V2
U3 = Vcenter
U4 = Vbias

14 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

The variable simplifiactions are thus:

H = 1L
Κ = 2ϕ (6) βλN 4π2

m11 = 2ϕ (6) dJ
m12 = K J
m21 = K L
m22 = RL
α = rC m gm rC2 + IC
γ = Vrange2 θrange
ρ = air friction coeff

The second one is “Kappa”, but it looks like “K” in this font... :(
We can make a new State Space model for the complete open loop system directly from the
SFG:
X 1 = X2
X 2 = α X1 - ρ X2 + K X3 - K X5
X 3 = -m11 X3 + m12 X4
X 4 = -m21 X3 - m22 X4 - H Vbias + H V1
X 5 = -m11 X5 + m12 X6
X 6 = -m21 X5 - m22 X6 - H Vbias + H V2

Y = γ X1 + Vcenter

X 1
X 2
X 3
X 4
X 5
X 6

=
0 1 0 0 0 0α -ρ Κ 0 -Κ 0
0 0 -m11 m12 0 0
0 0 -m21 -m22 0 0
0 0 0 0 -m11 m120 0 0 0 -m21 -m22

X1X2X3X4X5X6

+
0 0 0 0
0 0 0 0
0 0 0 0
H 0 0 -H
0 0 0 0
0 H 0 -H

U1U2U3U4

Y = (γ 0 0 0 0 0)
X1X2X3X4X5X6

+ (0 0 1 0)
U1U2U3U4

ThrustBETTER.nb 15

Printed by Wolfram Mathematica Student Edition

MATHEMATICA STUFF
Aol = {{0, 1, 0, 0, 0, 0}, {α, -ρ, Κ, 0, -Κ, 0}, {0, 0, -m11, m12, 0, 0},

{0, 0, -m21, -m22, 0, 0}, {0, 0, 0, 0, -m11, m12}, {0, 0, 0, 0, -m21, -m22}}
0 1 0 0 0 0α -ρ Κ 0 -Κ 0
0 0 -m11 m12 0 0
0 0 -m21 -m22 0 0
0 0 0 0 -m11 m12
0 0 0 0 -m21 -m22

Bol = {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {H, 0, 0, -H}, {0, 0, 0, 0}, {0, H, 0, -H}}
0 0 0 0
0 0 0 0
0 0 0 0
H 0 0 -H
0 0 0 0
0 H 0 -H

Col = {{γ, 0, 0, 0, 0, 0}}
(γ 0 0 0 0 0)
Dol = {{0, 0, 1, 0}}
(0 0 1 0)
olssm = StateSpaceModel[{Aol, Bol, Col, Dol}]

0 1 0 0 0 0 0 0 0 0α -ρ Κ 0 -Κ 0 0 0 0 0
0 0 -m11 m12 0 0 0 0 0 0
0 0 -m21 -m22 0 0 H 0 0 -H
0 0 0 0 -m11 m12 0 0 0 0
0 0 0 0 -m21 -m22 0 H 0 -Hγ 0 0 0 0 0 0 0 1 0



MatrixRank[ControllabilityMatrix[olssm]]
6
MatrixRank[ObservabilityMatrix[olssm]]
4
Oh no! The observability matrix is not of full rank! We have to find out which modes are unobservable.
Might as well take a look at the transfer functions:

16 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

Φol = s * IdentityMatrix[6] - Aol
s -1 0 0 0 0-α s + ρ -Κ 0 Κ 0
0 0 s + m11 -m12 0 0
0 0 m21 s + m22 0 0
0 0 0 0 s + m11 -m12
0 0 0 0 m21 s +m22

TFol = Col.Inverse[Φol].Bol;
Roots[Denominator[TFol][[1, 1]]  0, s]
s 1

2 -m11 -m22 - m112 - 2 m22 m11 + m222 - 4 m12 m21 
s 1

2 -m11 -m22 - m112 - 2 m22 m11 +m222 - 4 m12 m21 
s 1

2 -m11 -m22 + m112 - 2 m22 m11 +m222 - 4 m12 m21 
s 1

2 -m11 -m22 + m112 - 2 m22 m11 +m222 - 4 m12 m21  s 1
2 - 4 α + ρ2 - ρ  s 1

2 4 α + ρ2 - ρ
Looks like we only have one RHP pole... just like the original system. What is interesting to
me is that the observability matrix becomes full rank when the motors have different parameters.
This bugs me. I don’t know what to do about this for sure, but it seems odd to me...

UPDATE! Measure the Current, or Motor Speed!
I also noticed that when you try to make an LQR controller with the model we made, it wants to apply
feedback to the inputs Vcenter and Vbias. I think I should just get rid of these, and just remember their
meanings via software.
Bol = {{0, 0}, {0, 0}, {0, 0}, {H, 0}, {0, 0}, {0, H}}

0 0
0 0
0 0
H 0
0 0
0 H

Col = {{γ, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0}}
 γ 0 0 0 0 0

0 0 0 1 0 0 
Dol = {{0, 0}, {0, 0}}
 0 0

0 0 

ThrustBETTER.nb 17

Printed by Wolfram Mathematica Student Edition

olssm = StateSpaceModel[{Aol, Bol, Col, Dol}]
0 1 0 0 0 0 0 0α -ρ Κ 0 -Κ 0 0 0
0 0 -m11 m12 0 0 0 0
0 0 -m21 -m22 0 0 H 0
0 0 0 0 -m11 m12 0 0
0 0 0 0 -m21 -m22 0 Hγ 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0



MatrixRank[ObservabilityMatrix[olssm]]
6
Hurray! this is a great thing. We can measure the current through just one motor, and get a fully
observable system. What if our measurement is the sum of currents through both motors?
Col = {{γ, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 1}}
 γ 0 0 0 0 0

0 0 0 1 0 1 
olssm = StateSpaceModel[{Aol, Bol, Col, Dol}]

0 1 0 0 0 0 0 0α -ρ Κ 0 -Κ 0 0 0
0 0 -m11 m12 0 0 0 0
0 0 -m21 -m22 0 0 H 0
0 0 0 0 -m11 m12 0 0
0 0 0 0 -m21 -m22 0 Hγ 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0



MatrixRank[ObservabilityMatrix[olssm]]
6
Haha! what a gift! This is really easy to do with the setup we made. All we need is something like
an INA169, and a tenth ohm power resistor. I think we decided to limit the current drawn by each
motor to around 3A, so this will work good.

But, now that we have the combined current measurement, we need an observer for both -- and
all the other states if we want our control to be optimal. A good experiment could be to see how
little of feedback we need. Simple PD worked with the old model, so it will probably work here. I
would like to see if having more feedback about the motor speed and current will make it behave
differently. I hope it would, because I spent alot of time in this...

18 ThrustBETTER.nb

Printed by Wolfram Mathematica Student Edition

